Move your mouse over image or click to enlarge



This product is a high purity alpha-hydroxydihydroceramide and is ideal as a standard and for biological studies. Dihydroceramide is a critical intermediate in the synthesis of many complex sphingoid bases. Inhibition of dihydroceramide synthesis by some fungal toxins that have a similar structure causes an increase in sphinganine and sphinganine-1-phosphate and a decrease in other sphingolipids leading to a number of diseases including oesophageal cancer. Dihydroceramide, synthesized by the acylation of sphinganine, is subsequently converted into ceramide via a desaturase enzyme or into phytosphingosine via the C4-hydrozylase enzyme.1 The presence of a hydroxyl group on the fatty acyl chain of dihydroceramides significantly affects the function and properties of the molecule. While 2(S)-hydroxydihydroceramides can be converted to non-hydroxydihydroceramides in vivo 2(R)-hydroxydihydroceramides cannot. Data presented suggests that 2(R)-hydroxydihydroceramides may interact with some distinct cellular regulatory targets in a specific and more effective manner than their nonhydroxylated analogs.2 2-hydroxydihydroceramides have been shown to be incorporated into the galactosylceramides and sulfatides of the myelin where they are essential to neuronal functions.3
Cat# Size Price Qty Buy
2043 5 mg £232.05

Additional Information

Property Value or Rating
Product Size 5 mg
Manufacturer Matreya, LLC
Empirical Formula C30H61NO4
Formula Weight 499.8
Solvent none
Source synthetic
Purity 98+%
Analytical Methods GC,TLC
Natural Source Synthetic
Solubility chloroform/methanol/water, 2:1:0.5
Physical Appearance A neat solid
Storage -20°C

1. Y. Mizutani, A. Kihara, and Y. Igarashi “Identifcation of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation” FEBS Letters, vol. 563 pp. 93-97, 2004 
2. Z. Szulc et al. “Synthesis, NMR characterization and divergent biological actions of 2-hydroxy-ceramide/dihydroceramide stereoisomers in MCF7 cells” Bioorg Med Chem, vol. 18 pp. 7565-7579, 2010 
3. M. Kruer et al. “Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA)” Annals of Neurology, vol. 68 pp. 611- 618, 2010

Related Documents